

PDF Parsing

Table of Contents

	1. Overview
	1.1. Requirements
	1.1.1. Python packages
	1.1.2. External

	1.2. Contributing
	1.3. Example usage
	1.4. Possible improvements

	2. Preparing data
	2.1. Converting PDFs to images
	2.2. Detecting image orientation and applying rotation.

	3. Detecting tables
	3.1. Improving accuracy

	4. OCR tables
	4.1. Training Tesseract
	4.2. Blur
	4.3. Threshold
	4.4. Finding the vertical and horizontal lines of the table
	4.5. Finding the contours
	4.6. Sorting the bounding rectangles
	4.7. Cropping each cell to the text
	4.8. OCR each cell

	5. Files
	5.1. setup.py
	5.2. table_ocr
	5.2.1. table_ocr/__init__.py
	5.2.2. table_ocr/util.py
	5.2.3. table_ocr/pdf_to_images/
	5.2.3.1. table_ocr/pdf_to_images/__init__.py
	5.2.3.2. table_ocr/pdf_to_images/__main__.py

	5.2.4. table_ocr/extract_tables/
	5.2.4.1. table_ocr/extract_tables/__init__.py
	5.2.4.2. table_ocr/extract_tables/__main__.py

	5.2.5. table_ocr/extract_cells/
	5.2.5.1. table_ocr/extract_cells/__init__.py
	5.2.5.2. table_ocr/extract_cells/__main__.py

	5.2.6. table_ocr/ocr_image/
	5.2.6.1. table_ocr/ocr_image/__init__.py
	5.2.6.2. table_ocr/ocr_image/__main__.py

	5.2.7. table_ocr/ocr_to_csv/
	5.2.7.1. table_ocr/ocr_to_csv/__init__.py
	5.2.7.2. table_ocr/ocr_to_csv/__main__.py

	6. Utils
	6.1. Logging

1 Overview

This Python package provides utilities for extracting tabular data from PDF
files and images of tables.

Given an image that contains a table…

Extract the the text into a CSV format…

PRIZE,ODDS 1 IN:,# OF WINNERS*
$3,9.09,"282,447"
$5,16.66,"154,097"
$7,40.01,"64,169"
$10,26.67,"96,283"
$20,100.00,"25,677"
$30,290.83,"8,829"
$50,239.66,"10,714"
$100,919.66,"2,792"
$500,"6,652.07",386
"$40,000","855,899.99",3
1,i223,
Toa,,
,,
,,"* Based upon 2,567,700"

The package is split into modules with narrow focuses.

	pdf_to_images uses Poppler and ImageMagick to extract images from a PDF.
	extract_tables finds and extracts table-looking things from an image.
	extract_cells extracts and orders cells from a table.
	ocr_image uses Tesseract to turn a OCR the text from an image of a cell.
	ocr_to_csv converts into a CSV the directory structure that ocr_image outputs.

1.1 Requirements

1.1.1 Python packages

	numpy
	opencv-python
	pytesseract

1.1.2 External

	pdfimages from Poppler
	Tesseract
	mogfrify ImageMagick

1.2 Contributing

This package was created in a literate programming style with the help of Babel.

The unfortunate downside is the obscurity of the tooling. It creates a bit of a
barrier for contributors who aren’t already familiar with Emacs and Babel.

1.3 Example usage

Here is an example of a shell script that uses each module to turn a pdf with a
table into CSV output.

Depending on your needs, you may not need all of these steps. If you already
have an image of a table, you can jum straight to extracting the cells.

Each piece is its own python module, so you can also simply import the pieces
you need into your own python projects and use them as needed.

#!/bin/sh

PDF=$1

python -m table_ocr.pdf_to_images $PDF | grep .png > /tmp/pdf-images.txt
cat /tmp/pdf-images.txt | xargs -I{} python -m table_ocr.extract_tables {} | grep table > /tmp/extracted-tables.txt
cat /tmp/extracted-tables.txt | xargs -I{} python -m table_ocr.extract_cells {} | grep cells > /tmp/extracted-cells.txt
cat /tmp/extracted-cells.txt | xargs -I{} python -m table_ocr.ocr_image {} --psm 7 -l table-ocr

for image in $(cat /tmp/extracted-tables.txt); do
 dir=$(dirname $image)
 python -m table_ocr.ocr_to_csv $(find $dir/cells -name "*.txt")
done

1.4 Possible improvements

Detect text with the stroke-width-transform alogoritm. https://zablo.net/blog/post/stroke-width-transform-swt-python/index.html

2 Preparing data

Not all pdfs need to be sent through OCR to extract the text content. If you can
click and drag to highlight text in the pdf, then the tools in this library
probably aren’t necessary.

2.1 Converting PDFs to images

This code calls out to pdfimages from Poppler.

Wrapper around the Poppler command line utility "pdfimages" and helpers for
finding the output files of that command.
def pdf_to_images(pdf_filepath):
 """
 Turn a pdf into images
 """
 directory, filename = os.path.split(pdf_filepath)
 with working_dir(directory):
 image_filenames = pdfimages(pdf_filepath)

 # Since pdfimages creates a number of files named each for there page number
 # and doesn't return us the list that it created
 return [os.path.join(directory, f) for f in image_filenames]

def pdfimages(pdf_filepath):
 """
 Uses the `pdfimages` utility from Poppler
 (https://poppler.freedesktop.org/). Creates images out of each page. Images
 are prefixed by their name sans extension and suffixed by their page number.

 This should work up to pdfs with 999 pages since find matching files in dir
 uses 3 digits in its regex.
 """
 directory, filename = os.path.split(pdf_filepath)
 filename_sans_ext = filename.split(".pdf")[0]
 subprocess.run(["pdfimages", "-png", pdf_filepath, filename.split(".pdf")[0]])
 image_filenames = find_matching_files_in_dir(filename_sans_ext, directory)
 logger.debug(
 "Converted {} into files:\n{}".format(pdf_filepath, "\n".join(image_filenames))
)
 return image_filenames

def find_matching_files_in_dir(file_prefix, directory):
 files = [
 filename
 for filename in os.listdir(directory)
 if re.match(r"{}-\d{{3}}.*\.png".format(re.escape(file_prefix)), filename)
]
 return files

2.2 Detecting image orientation and applying rotation.

Tesseract can detect orientation and we can then use ImageMagick’s mogrify to
rotate the image.

Here’s an example of the output we get from orientation detection with
Tesseract.

➜ example/ tesseract --psm 0 example-000.png -
Page number: 0
Orientation in degrees: 90
Rotate: 270
Orientation confidence: 26.86
Script: Latin
Script confidence: 2.44

The following are some helpers to detect orientation of the images that Poppler
extracted and, if the images are rotated or skewed, use ImageMagick’s `mogrify`
to correct the rotation. This makes OCR more straightforward.

def preprocess_img(filepath):
 """
 Processing that involves running shell executables,
 like mogrify to rotate.
 """
 rotate = get_rotate(filepath)
 logger.debug("Rotating {} by {}.".format(filepath, rotate))
 mogrify(filepath, rotate)

def get_rotate(image_filepath):
 output = (
 subprocess.check_output(["tesseract", "--psm", "0", image_filepath, "-"])
 .decode("utf-8")
 .split("\n")
)
 output = next(l for l in output if "Rotate: " in l)
 output = output.split(": ")[1]
 return output

def mogrify(image_filepath, rotate):
 subprocess.run(["mogrify", "-rotate", rotate, image_filepath])

3 Detecting tables

This answer from opencv.org was heavily referenced while writing the code around
table detection:
https://answers.opencv.org/question/63847/how-to-extract-tables-from-an-image/.

It’s much easier to OCR a table when the table is the only thing in the image.
This code detects tables in an image and returns a list of images of just the
tables, no surrounding text or noise.

The blurring, thresholding, and line detection is used here as well as later on
for cell extraction. They are good techniques for cleaning an image up in a way
that makes things like shape detection more accurate.

def find_tables(image):
 BLUR_KERNEL_SIZE = (17, 17)
 STD_DEV_X_DIRECTION = 0
 STD_DEV_Y_DIRECTION = 0
 blurred = cv2.GaussianBlur(image, BLUR_KERNEL_SIZE, STD_DEV_X_DIRECTION, STD_DEV_Y_DIRECTION)
 MAX_COLOR_VAL = 255
 BLOCK_SIZE = 15
 SUBTRACT_FROM_MEAN = -2

 img_bin = cv2.adaptiveThreshold(
 ~blurred,
 MAX_COLOR_VAL,
 cv2.ADAPTIVE_THRESH_MEAN_C,
 cv2.THRESH_BINARY,
 BLOCK_SIZE,
 SUBTRACT_FROM_MEAN,
)
 vertical = horizontal = img_bin.copy()
 SCALE = 5
 image_width, image_height = horizontal.shape
 horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(image_width / SCALE), 1))
 horizontally_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel)
 vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(image_height / SCALE)))
 vertically_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel)

 horizontally_dilated = cv2.dilate(horizontally_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1)))
 vertically_dilated = cv2.dilate(vertically_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 60)))

 mask = horizontally_dilated + vertically_dilated
 contours, heirarchy = cv2.findContours(
 mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE,
)

 MIN_TABLE_AREA = 1e5
 contours = [c for c in contours if cv2.contourArea(c) > MIN_TABLE_AREA]
 perimeter_lengths = [cv2.arcLength(c, True) for c in contours]
 epsilons = [0.1 * p for p in perimeter_lengths]
 approx_polys = [cv2.approxPolyDP(c, e, True) for c, e in zip(contours, epsilons)]
 bounding_rects = [cv2.boundingRect(a) for a in approx_polys]

 # The link where a lot of this code was borrowed from recommends an
 # additional step to check the number of "joints" inside this bounding rectangle.
 # A table should have a lot of intersections. We might have a rectangular image
 # here though which would only have 4 intersections, 1 at each corner.
 # Leaving that step as a future TODO if it is ever necessary.
 images = [image[y:y+h, x:x+w] for x, y, w, h in bounding_rects]
 return images

Here is an the an example of the result of the find_tables function.

import cv2

image_filename = "resources/examples/example-page.png"
image = cv2.imread(image_filename, cv2.IMREAD_GRAYSCALE)
image = find_tables(image)[0]
cv2.imwrite("resources/examples/example-table.png", image)

↓

3.1 Improving accuracy

It’s likely that some images will contain tables that aren’t accurately
recognized by the code above. The code will then need to be made more robust.
But how will we know that changes to the code don’t break the detection of
tables that were previously detected?

It might be good to add some type of test suite in the future that contains a
spec that matches a pdf with the pages and pixel coordinates of the detected
tables. The coordinates would need to have a range. Something like
“example-1.pdf, page-2.png, [450:470, 200:210, 800:820, 1270:1290]” where the
elements of the list are valid x, y, w, h ranges. So the test will pass if if
the x, y, width and height are anywhere in that range.

4 OCR tables

Tesseract does not perform well when run on images of tables. It performs best
when given a single line of text with no extra noise.

Therefore, our next task is to find and extract the bounding box of each cell in
the table. Run tesseract on each cell. Print a comma seperated output.

We’ll start with an image shown at the end of the previous section.

4.1 Training Tesseract

It’s a very good idea to train tesseract. Accuracy will improve tremendously.

Clone the tesstrain repo at https://github.com/tesseract-ocr/tesstrain.

Run the ocr_tables script on a few pdfs to generate some training data. That
script outputs pairs of .png and .gt.txt files that can be used by
tesstrain.

Make sure the .gt.txt files contain an accurate recognition of the
corresponding image. Since the first few runs will be untrained, you’ll probably
need to fix up a few of the text files.

Once they are accurate, move them to a new subdirectory of the tesstrain repo;
tesstrain/data/<model-name>-ground-truth/.

You’ll also need to clone the tessdata_best repo,
https://github.com/tesseract-ocr/tessdata_best and the
https://github.com/tesseract-ocr/langdata to use as the start of the
training model.

I’m actually not sure how much the punctuation and numbers from langdata help.
I didn’t keep accurate records while playing with the training, I don’t
thoroughly understand it, and it’s not profitable for me to explore it at the
moment. It worked for my purposes and that has been good enough.

make training MODEL_NAME=table-ocr START_MODEL=eng TESSDATA=~/src/tessdata_best PUNC_FILE=~/src/langdata/eng/eng.punc NUMBERS_FILE=~/src/langdata/eng/eng.numbers

Once the training is complete, there will be a new file
tesstrain/data/<model-name>.traineddata. Copy that file to the directory
Tesseract searches for models. On my machine, it was /usr/local/share/tessdata/.

4.2 Blur

Blurring helps to make noise less noisy so that the overall structure of an
image is more detectable.

That gray row at the bottom is kind of noisy. If we don’t somehow clean it up,
OpenCV will detect all sorts of odd shapes in there and it will throw off our
cell detection.

Cleanup can be accomplished with a blur followed by some thresholding.

BLUR_KERNEL_SIZE = (17, 17)
STD_DEV_X_DIRECTION = 0
STD_DEV_Y_DIRECTION = 0
blurred = cv2.GaussianBlur(image, BLUR_KERNEL_SIZE, STD_DEV_X_DIRECTION, STD_DEV_Y_DIRECTION)

image = ~cv2.imread("resources/examples/example-table.png", cv2.IMREAD_GRAYSCALE)
<<blur>>
cv2.imwrite("resources/examples/example-table-blurred.png", blurred)

4.3 Threshold

We’ve got a bunch of pixels that are gray. Thresholding will turn them all
either black or white. Having all black or white pixels lets us do morphological
transformations like erosion and dilation.

MAX_COLOR_VAL = 255
BLOCK_SIZE = 15
SUBTRACT_FROM_MEAN = -2

img_bin = cv2.adaptiveThreshold(
 ~blurred,
 MAX_COLOR_VAL,
 cv2.ADAPTIVE_THRESH_MEAN_C,
 cv2.THRESH_BINARY,
 BLOCK_SIZE,
 SUBTRACT_FROM_MEAN,
)

<<threshold>>
cv2.imwrite("resources/examples/example-table-thresholded.png", img_bin)

4.4 Finding the vertical and horizontal lines of the table

vertical = horizontal = img_bin.copy()
SCALE = 5
image_width, image_height = horizontal.shape
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(image_width / SCALE), 1))
horizontally_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel)
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(image_height / SCALE)))
vertically_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel)

horizontally_dilated = cv2.dilate(horizontally_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1)))
vertically_dilated = cv2.dilate(vertically_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 60)))

mask = horizontally_dilated + vertically_dilated

Note: There’s a wierd issue with the results of the example below when it’s
evaluated as part of an export or a full-buffer evaluation. If you evaluate the
example by itself, it looks the way it’s intended. If you evaluate it as part of
an entire buffer evaluation, like during export, it’s distorted.

<<lines-of-table>>
cv2.imwrite("resources/examples/example-table-lines.png", mask)

4.5 Finding the contours

Blurring and thresholding allow us to find the lines. Opening the lines allows
us to find the contours.

An “Opening” is an erosion followed by a dilation. Great examples and
descriptions of each morphological operation can be found at
https://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html.

Contours can be explained simply as a curve joining all the continuous points
(along the boundary), having same color or intensity. The contours are a useful
tool for shape analysis and object detection and recognition.

We can search those contours to find rectangles of certain size.

To do that, we can use OpenCV’s approxPolyEP function. It takes as arguments
the contour (list of contiguous points), and a number representing how different
the polygon perimeter length can be from the true perimeter length of the
contour. 0.1 (10%) seems to be a good value. The difference in perimeter
length between a 4-sided polygon and a 3-sided polygon is greater than 10% and
the difference between a 5+ sided polygon and a 4-sided polygon is less than
10%. So a 4-sided polygon is the polygon with the fewest sides that leaves the
difference in perimeter length within our 10% threshold.

Then we just get the bounding rectangle of that polygon and we have our cells!

We might need to do a little more filtering of those rectangles though. We might
have accidentally found some noise such as another image on the page or a title
header bar or something. If we know our cells are all within a certain size (by
area of pixels) then we can filter out the junk cells by removing cells
above/below certain sizes.

contours, heirarchy = cv2.findContours(
 mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE,
)

perimeter_lengths = [cv2.arcLength(c, True) for c in contours]
epsilons = [0.05 * p for p in perimeter_lengths]
approx_polys = [cv2.approxPolyDP(c, e, True) for c, e in zip(contours, epsilons)]

Filter out contours that aren't rectangular. Those that aren't rectangular
are probably noise.
approx_rects = [p for p in approx_polys if len(p) == 4]
bounding_rects = [cv2.boundingRect(a) for a in approx_polys]

Filter out rectangles that are too narrow or too short.
MIN_RECT_WIDTH = 40
MIN_RECT_HEIGHT = 10
bounding_rects = [
 r for r in bounding_rects if MIN_RECT_WIDTH < r[2] and MIN_RECT_HEIGHT < r[3]
]

The largest bounding rectangle is assumed to be the entire table.
Remove it from the list. We don't want to accidentally try to OCR
the entire table.
largest_rect = max(bounding_rects, key=lambda r: r[2] * r[3])
bounding_rects = [b for b in bounding_rects if b is not largest_rect]

cells = [c for c in bounding_rects]

4.6 Sorting the bounding rectangles

We want to process these from left-to-right, top-to-bottom.

I’ve thought of a straightforward algorithm for it, but it could probably be
made more efficient.

We’ll find the most rectangle with the most top-left corner. Then we’ll find all
of the rectangles that have a center that is within the top-y and bottom-y
values of that top-left rectangle. Then we’ll sort those rectangles by the x
value of their center. We’ll remove those rectangles from the list and repeat.

def cell_in_same_row(c1, c2):
 c1_center = c1[1] + c1[3] - c1[3] / 2
 c2_bottom = c2[1] + c2[3]
 c2_top = c2[1]
 return c2_top < c1_center < c2_bottom

orig_cells = [c for c in cells]
rows = []
while cells:
 first = cells[0]
 rest = cells[1:]
 cells_in_same_row = sorted(
 [
 c for c in rest
 if cell_in_same_row(c, first)
],
 key=lambda c: c[0]
)

 row_cells = sorted([first] + cells_in_same_row, key=lambda c: c[0])
 rows.append(row_cells)
 cells = [
 c for c in rest
 if not cell_in_same_row(c, first)
]

Sort rows by average height of their center.
def avg_height_of_center(row):
 centers = [y + h - h / 2 for x, y, w, h in row]
 return sum(centers) / len(centers)

rows.sort(key=avg_height_of_center)

To test if this code works, let’s try sorting the bounding rectangles and
numbering them from right to left, top to bottom.

import cv2
image = cv2.imread("resources/examples/example-table.png", cv2.IMREAD_GRAYSCALE)
<<blur>>
<<threshold>>
<<lines-of-table>>
<<bounding-rects>>
<<sort-contours>>

FONT_SCALE = 0.7
FONT_COLOR = (127, 127, 127)
for i, row in enumerate(rows):
 for j, cell in enumerate(row):
 x, y, w, h = cell
 cv2.putText(
 image,
 "{},{}".format(i, j),
 (int(x + w - w / 2), int(y + h - h / 2)),
 cv2.FONT_HERSHEY_SIMPLEX,
 FONT_SCALE,
 FONT_COLOR,
 2,
)
cv2.imwrite("resources/examples/example-table-cells-numbered.png", image)

def extract_cell_images_from_table(image):
 BLUR_KERNEL_SIZE = (17, 17)
 STD_DEV_X_DIRECTION = 0
 STD_DEV_Y_DIRECTION = 0
 blurred = cv2.GaussianBlur(image, BLUR_KERNEL_SIZE, STD_DEV_X_DIRECTION, STD_DEV_Y_DIRECTION)
 MAX_COLOR_VAL = 255
 BLOCK_SIZE = 15
 SUBTRACT_FROM_MEAN = -2

 img_bin = cv2.adaptiveThreshold(
 ~blurred,
 MAX_COLOR_VAL,
 cv2.ADAPTIVE_THRESH_MEAN_C,
 cv2.THRESH_BINARY,
 BLOCK_SIZE,
 SUBTRACT_FROM_MEAN,
)
 vertical = horizontal = img_bin.copy()
 SCALE = 5
 image_width, image_height = horizontal.shape
 horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(image_width / SCALE), 1))
 horizontally_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel)
 vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(image_height / SCALE)))
 vertically_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel)

 horizontally_dilated = cv2.dilate(horizontally_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1)))
 vertically_dilated = cv2.dilate(vertically_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 60)))

 mask = horizontally_dilated + vertically_dilated
 contours, heirarchy = cv2.findContours(
 mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE,
)

 perimeter_lengths = [cv2.arcLength(c, True) for c in contours]
 epsilons = [0.05 * p for p in perimeter_lengths]
 approx_polys = [cv2.approxPolyDP(c, e, True) for c, e in zip(contours, epsilons)]

 # Filter out contours that aren't rectangular. Those that aren't rectangular
 # are probably noise.
 approx_rects = [p for p in approx_polys if len(p) == 4]
 bounding_rects = [cv2.boundingRect(a) for a in approx_polys]

 # Filter out rectangles that are too narrow or too short.
 MIN_RECT_WIDTH = 40
 MIN_RECT_HEIGHT = 10
 bounding_rects = [
 r for r in bounding_rects if MIN_RECT_WIDTH < r[2] and MIN_RECT_HEIGHT < r[3]
]

 # The largest bounding rectangle is assumed to be the entire table.
 # Remove it from the list. We don't want to accidentally try to OCR
 # the entire table.
 largest_rect = max(bounding_rects, key=lambda r: r[2] * r[3])
 bounding_rects = [b for b in bounding_rects if b is not largest_rect]

 cells = [c for c in bounding_rects]
 def cell_in_same_row(c1, c2):
 c1_center = c1[1] + c1[3] - c1[3] / 2
 c2_bottom = c2[1] + c2[3]
 c2_top = c2[1]
 return c2_top < c1_center < c2_bottom

 orig_cells = [c for c in cells]
 rows = []
 while cells:
 first = cells[0]
 rest = cells[1:]
 cells_in_same_row = sorted(
 [
 c for c in rest
 if cell_in_same_row(c, first)
],
 key=lambda c: c[0]
)

 row_cells = sorted([first] + cells_in_same_row, key=lambda c: c[0])
 rows.append(row_cells)
 cells = [
 c for c in rest
 if not cell_in_same_row(c, first)
]

 # Sort rows by average height of their center.
 def avg_height_of_center(row):
 centers = [y + h - h / 2 for x, y, w, h in row]
 return sum(centers) / len(centers)

 rows.sort(key=avg_height_of_center)
 cell_images_rows = []
 for row in rows:
 cell_images_row = []
 for x, y, w, h in row:
 cell_images_row.append(image[y:y+h, x:x+w])
 cell_images_rows.append(cell_images_row)
 return cell_images_rows

<<extract-cells-from-table>>
image = cv2.imread("resources/examples/example-table.png", cv2.IMREAD_GRAYSCALE)
cell_images_rows = extract_cell_images_from_table(image)
cv2.imwrite("resources/examples/example-table-cell-1-1.png", cell_images_rows[1][1])

4.7 Cropping each cell to the text

OCR with Tesseract works best when there is about 10 pixels of white border
around the text.

Our bounding rectangles may have picked up some stray pixels from the horizontal
and vertical lines of the cells in the table. It’s probobly just a few pixels,
much fewer than the width of the text. If that’s the case, then we can remove
that noise with a simple open morph.

Once the stray border pixels have been removed, we can expand our border using
copyMakeBorder.

def crop_to_text(image):
 MAX_COLOR_VAL = 255
 BLOCK_SIZE = 15
 SUBTRACT_FROM_MEAN = -2

 img_bin = cv2.adaptiveThreshold(
 ~image,
 MAX_COLOR_VAL,
 cv2.ADAPTIVE_THRESH_MEAN_C,
 cv2.THRESH_BINARY,
 BLOCK_SIZE,
 SUBTRACT_FROM_MEAN,
)

 img_h, img_w = image.shape
 horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(img_w * 0.5), 1))
 vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(img_h * 0.7)))
 horizontal_lines = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel)
 vertical_lines = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel)
 both = horizontal_lines + vertical_lines
 cleaned = img_bin - both

 # Get rid of little noise.
 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
 opened = cv2.morphologyEx(cleaned, cv2.MORPH_OPEN, kernel)
 opened = cv2.dilate(opened, kernel)

 contours, hierarchy = cv2.findContours(opened, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
 bounding_rects = [cv2.boundingRect(c) for c in contours]
 NUM_PX_COMMA = 6
 MIN_CHAR_AREA = 5 * 9
 char_sized_bounding_rects = [(x, y, w, h) for x, y, w, h in bounding_rects if w * h > MIN_CHAR_AREA]
 if char_sized_bounding_rects:
 minx, miny, maxx, maxy = math.inf, math.inf, 0, 0
 for x, y, w, h in char_sized_bounding_rects:
 minx = min(minx, x)
 miny = min(miny, y)
 maxx = max(maxx, x + w)
 maxy = max(maxy, y + h)
 x, y, w, h = minx, miny, maxx - minx, maxy - miny
 cropped = image[y:min(img_h, y+h+NUM_PX_COMMA), x:min(img_w, x+w)]
 else:
 # If we morphed out all of the text, assume an empty image.
 cropped = MAX_COLOR_VAL * np.ones(shape=(20, 100), dtype=np.uint8)
 bordered = cv2.copyMakeBorder(cropped, 5, 5, 5, 5, cv2.BORDER_CONSTANT, None, 255)
 return bordered

import cv2
import numpy as np
<<crop-to-text>>
image = cv2.imread("resources/examples/example-table-cell-1-1.png", cv2.IMREAD_GRAYSCALE)
image = crop_to_text(image)
cv2.imwrite("resources/examples/example-table-cell-1-1-cropped.png", image)

4.8 OCR each cell

If we cleaned up the images well enough, we might get some accurate OCR!

There is plenty that could have gone wrong along the way.

The first step to troubleshooting is to view the intermediate images and see if
there’s something about your image that is obviously abnormal, like some really
thick noise or a wrongly detected table.

If everything looks reasonable but the OCR is doing something like turning a
period into a comma, then you might need to do some custom Tesseract training.

def ocr_image(image, config):
 return pytesseract.image_to_string(
 image,
 config=config
)

import pytesseract
import cv2
import numpy as np
image = cv2.imread("resources/examples/example-table-cell-1-1.png", cv2.IMREAD_GRAYSCALE)
<<crop-to-text>>
<<ocr-image>>
image = crop_to_text(image)
ocr_image(image, "--psm 7")

9.09

5 Files

5.1 setup.py

import setuptools

long_description = """
Utilities for turning images of tables into CSV data. Uses Tesseract and OpenCV.

Requires binaries for tesseract and pdfimages (from Poppler).
"""
setuptools.setup(
 name="table_ocr",
 version="0.0.1",
 author="Eric Ihli",
 author_email="eihli@owoga.com",
 description="Turn images of tables into CSV data.",
 long_description=long_description,
 long_description_content_type="text/plain",
 url="https://github.com/eihli/image-table-ocr",
 packages=setuptools.find_packages(),
 classifiers=[
 "Programming Language :: Python :: 3",
 "License :: OSI Approved :: MIT License",
 "Operating System :: OS Independent",
],
 install_requires=[
 "pytesseract~=0.3",
 "opencv-python~=4.2",
],
 python_requires='>=3.6',
)

5.2 table_ocr

5.2.1 table_ocr/__init__.py

5.2.2 table_ocr/util.py

from contextlib import contextmanager
import functools
import logging
import os
import tempfile

def get_logger(name):
 logger = logging.getLogger(name)
 lvl = os.environ.get("PY_LOG_LVL", "info").upper()
 handler = logging.StreamHandler()
 formatter = logging.Formatter(logging.BASIC_FORMAT)
 handler.setFormatter(formatter)
 logger.addHandler(handler)
 handler.setLevel(lvl)
 logger.setLevel(lvl)
 return logger

@contextmanager
def working_dir(directory):
 original_working_dir = os.getcwd()
 try:
 os.chdir(directory)
 yield directory
 finally:
 os.chdir(original_working_dir)

def make_tempdir(identifier):
 return tempfile.mkdtemp(prefix="{}_".format(identifier))

5.2.3 table_ocr/pdf_to_images/

5.2.3.1 table_ocr/pdf_to_images/__init__.py

import os
import re
import subprocess

from table_ocr.util import get_logger, working_dir

logger = get_logger(__name__)

Wrapper around the Poppler command line utility "pdfimages" and helpers for
finding the output files of that command.
def pdf_to_images(pdf_filepath):
 """
 Turn a pdf into images
 """
 directory, filename = os.path.split(pdf_filepath)
 with working_dir(directory):
 image_filenames = pdfimages(pdf_filepath)

 # Since pdfimages creates a number of files named each for there page number
 # and doesn't return us the list that it created
 return [os.path.join(directory, f) for f in image_filenames]

def pdfimages(pdf_filepath):
 """
 Uses the `pdfimages` utility from Poppler
 (https://poppler.freedesktop.org/). Creates images out of each page. Images
 are prefixed by their name sans extension and suffixed by their page number.

 This should work up to pdfs with 999 pages since find matching files in dir
 uses 3 digits in its regex.
 """
 directory, filename = os.path.split(pdf_filepath)
 filename_sans_ext = filename.split(".pdf")[0]
 subprocess.run(["pdfimages", "-png", pdf_filepath, filename.split(".pdf")[0]])
 image_filenames = find_matching_files_in_dir(filename_sans_ext, directory)
 logger.debug(
 "Converted {} into files:\n{}".format(pdf_filepath, "\n".join(image_filenames))
)
 return image_filenames

def find_matching_files_in_dir(file_prefix, directory):
 files = [
 filename
 for filename in os.listdir(directory)
 if re.match(r"{}-\d{{3}}.*\.png".format(re.escape(file_prefix)), filename)
]
 return files

def preprocess_img(filepath):
 """
 Processing that involves running shell executables,
 like mogrify to rotate.
 """
 rotate = get_rotate(filepath)
 logger.debug("Rotating {} by {}.".format(filepath, rotate))
 mogrify(filepath, rotate)

def get_rotate(image_filepath):
 output = (
 subprocess.check_output(["tesseract", "--psm", "0", image_filepath, "-"])
 .decode("utf-8")
 .split("\n")
)
 output = next(l for l in output if "Rotate: " in l)
 output = output.split(": ")[1]
 return output

def mogrify(image_filepath, rotate):
 subprocess.run(["mogrify", "-rotate", rotate, image_filepath])

5.2.3.2 table_ocr/pdf_to_images/__main__.py

Takes a variable number of pdf files and creates images out of each page of the
file using pdfimages from Poppler. Images are created in the same directory
that contains the pdf.

Prints each pdf followed by the images extracted from that pdf followed by a
blank line.

python -m table_ocr.prepare_pdfs /tmp/file1/file1.pdf /tmp/file2/file2.pdf ...

import argparse

from table_ocr.util import working_dir, make_tempdir, get_logger
from table_ocr.pdf_to_images import pdf_to_images, preprocess_img

logger = get_logger(__name__)

parser = argparse.ArgumentParser()
parser.add_argument("files", nargs="+")

def main(files):
 pdf_images = []
 for f in files:
 pdf_images.append((f, pdf_to_images(f)))

 for pdf, images in pdf_images:
 for image in images:
 preprocess_img(image)

 for pdf, images in pdf_images:
 print("{}\n{}\n".format(pdf, "\n".join(images)))

if __name__ == "__main__":
 args = parser.parse_args()
 main(args.files)

5.2.4 table_ocr/extract_tables/

5.2.4.1 table_ocr/extract_tables/__init__.py

import cv2

def find_tables(image):
 BLUR_KERNEL_SIZE = (17, 17)
 STD_DEV_X_DIRECTION = 0
 STD_DEV_Y_DIRECTION = 0
 blurred = cv2.GaussianBlur(image, BLUR_KERNEL_SIZE, STD_DEV_X_DIRECTION, STD_DEV_Y_DIRECTION)
 MAX_COLOR_VAL = 255
 BLOCK_SIZE = 15
 SUBTRACT_FROM_MEAN = -2

 img_bin = cv2.adaptiveThreshold(
 ~blurred,
 MAX_COLOR_VAL,
 cv2.ADAPTIVE_THRESH_MEAN_C,
 cv2.THRESH_BINARY,
 BLOCK_SIZE,
 SUBTRACT_FROM_MEAN,
)
 vertical = horizontal = img_bin.copy()
 SCALE = 5
 image_width, image_height = horizontal.shape
 horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(image_width / SCALE), 1))
 horizontally_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel)
 vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(image_height / SCALE)))
 vertically_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel)

 horizontally_dilated = cv2.dilate(horizontally_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1)))
 vertically_dilated = cv2.dilate(vertically_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 60)))

 mask = horizontally_dilated + vertically_dilated
 contours, heirarchy = cv2.findContours(
 mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE,
)

 MIN_TABLE_AREA = 1e5
 contours = [c for c in contours if cv2.contourArea(c) > MIN_TABLE_AREA]
 perimeter_lengths = [cv2.arcLength(c, True) for c in contours]
 epsilons = [0.1 * p for p in perimeter_lengths]
 approx_polys = [cv2.approxPolyDP(c, e, True) for c, e in zip(contours, epsilons)]
 bounding_rects = [cv2.boundingRect(a) for a in approx_polys]

 # The link where a lot of this code was borrowed from recommends an
 # additional step to check the number of "joints" inside this bounding rectangle.
 # A table should have a lot of intersections. We might have a rectangular image
 # here though which would only have 4 intersections, 1 at each corner.
 # Leaving that step as a future TODO if it is ever necessary.
 images = [image[y:y+h, x:x+w] for x, y, w, h in bounding_rects]
 return images

5.2.4.2 table_ocr/extract_tables/__main__.py

Takes 1 or more image paths as arguments.

Images are opened and read with OpenCV.

Tables are detected and extracted to a new subdirectory of the given image. The
subdirectory will be the filename sans the extension. The tables inside that
directory will be named table-000.png.

If you want to do something with the output, like pipe the paths of the
extracted tables into some other utility, here is a description of the output.

For each image path given as an agument, outputs:

	The given image path
	Paths of extracted tables; seperated by newlines
	Empty newline

import argparse
import os

import cv2

from table_ocr.extract_tables import find_tables

parser = argparse.ArgumentParser()
parser.add_argument("files", nargs="+")

def main(files):
 results = []
 for f in files:
 directory, filename = os.path.split(f)
 image = cv2.imread(f, cv2.IMREAD_GRAYSCALE)
 tables = find_tables(image)
 files = []
 filename_sans_extension = os.path.splitext(filename)[0]
 if tables:
 os.makedirs(os.path.join(directory, filename_sans_extension), exist_ok=True)
 for i, table in enumerate(tables):
 table_filename = "table-{:03d}.png".format(i)
 table_filepath = os.path.join(
 directory, filename_sans_extension, table_filename
)
 files.append(table_filepath)
 cv2.imwrite(table_filepath, table)
 if tables:
 results.append((f, files))

 for image_filename, table_filenames in results:
 print("\n".join(table_filenames))

if __name__ == "__main__":
 args = parser.parse_args()
 files = args.files
 main(files)

5.2.5 table_ocr/extract_cells/

5.2.5.1 table_ocr/extract_cells/__init__.py

import cv2

def extract_cell_images_from_table(image):
 BLUR_KERNEL_SIZE = (17, 17)
 STD_DEV_X_DIRECTION = 0
 STD_DEV_Y_DIRECTION = 0
 blurred = cv2.GaussianBlur(image, BLUR_KERNEL_SIZE, STD_DEV_X_DIRECTION, STD_DEV_Y_DIRECTION)
 MAX_COLOR_VAL = 255
 BLOCK_SIZE = 15
 SUBTRACT_FROM_MEAN = -2

 img_bin = cv2.adaptiveThreshold(
 ~blurred,
 MAX_COLOR_VAL,
 cv2.ADAPTIVE_THRESH_MEAN_C,
 cv2.THRESH_BINARY,
 BLOCK_SIZE,
 SUBTRACT_FROM_MEAN,
)
 vertical = horizontal = img_bin.copy()
 SCALE = 5
 image_width, image_height = horizontal.shape
 horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(image_width / SCALE), 1))
 horizontally_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel)
 vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(image_height / SCALE)))
 vertically_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel)

 horizontally_dilated = cv2.dilate(horizontally_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1)))
 vertically_dilated = cv2.dilate(vertically_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 60)))

 mask = horizontally_dilated + vertically_dilated
 contours, heirarchy = cv2.findContours(
 mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE,
)

 perimeter_lengths = [cv2.arcLength(c, True) for c in contours]
 epsilons = [0.05 * p for p in perimeter_lengths]
 approx_polys = [cv2.approxPolyDP(c, e, True) for c, e in zip(contours, epsilons)]

 # Filter out contours that aren't rectangular. Those that aren't rectangular
 # are probably noise.
 approx_rects = [p for p in approx_polys if len(p) == 4]
 bounding_rects = [cv2.boundingRect(a) for a in approx_polys]

 # Filter out rectangles that are too narrow or too short.
 MIN_RECT_WIDTH = 40
 MIN_RECT_HEIGHT = 10
 bounding_rects = [
 r for r in bounding_rects if MIN_RECT_WIDTH < r[2] and MIN_RECT_HEIGHT < r[3]
]

 # The largest bounding rectangle is assumed to be the entire table.
 # Remove it from the list. We don't want to accidentally try to OCR
 # the entire table.
 largest_rect = max(bounding_rects, key=lambda r: r[2] * r[3])
 bounding_rects = [b for b in bounding_rects if b is not largest_rect]

 cells = [c for c in bounding_rects]
 def cell_in_same_row(c1, c2):
 c1_center = c1[1] + c1[3] - c1[3] / 2
 c2_bottom = c2[1] + c2[3]
 c2_top = c2[1]
 return c2_top < c1_center < c2_bottom

 orig_cells = [c for c in cells]
 rows = []
 while cells:
 first = cells[0]
 rest = cells[1:]
 cells_in_same_row = sorted(
 [
 c for c in rest
 if cell_in_same_row(c, first)
],
 key=lambda c: c[0]
)

 row_cells = sorted([first] + cells_in_same_row, key=lambda c: c[0])
 rows.append(row_cells)
 cells = [
 c for c in rest
 if not cell_in_same_row(c, first)
]

 # Sort rows by average height of their center.
 def avg_height_of_center(row):
 centers = [y + h - h / 2 for x, y, w, h in row]
 return sum(centers) / len(centers)

 rows.sort(key=avg_height_of_center)
 cell_images_rows = []
 for row in rows:
 cell_images_row = []
 for x, y, w, h in row:
 cell_images_row.append(image[y:y+h, x:x+w])
 cell_images_rows.append(cell_images_row)
 return cell_images_rows

5.2.5.2 table_ocr/extract_cells/__main__.py

Takes as a command line argument a path to an image of a table.

Detects cells in the table and extracts each cell to an image file in a new
/cells/ subdirectory in the same directory of the given image’s path.

Each cell filename is suffixed with <row>-<column> so that the filenames can
be sorted lexicographically and will align with reading the cells from
left-to-right, top-to-bottom.

Prints to stdout the lexicographically sorted list of filenames of the extracted
cells.

import os
import sys

import cv2

from table_ocr.extract_cells import extract_cell_images_from_table

def main(f):
 results = []
 directory, filename = os.path.split(f)
 table = cv2.imread(f, cv2.IMREAD_GRAYSCALE)
 rows = extract_cell_images_from_table(table)
 cell_img_dir = os.path.join(directory, "cells")
 os.makedirs(cell_img_dir, exist_ok=True)
 for i, row in enumerate(rows):
 for j, cell in enumerate(row):
 cell_filename = "{:03d}-{:03d}.png".format(i, j)
 path = os.path.join(cell_img_dir, cell_filename)
 cv2.imwrite(path, cell)
 print(path)

def extract_cell_images_from_table(image):
 BLUR_KERNEL_SIZE = (17, 17)
 STD_DEV_X_DIRECTION = 0
 STD_DEV_Y_DIRECTION = 0
 blurred = cv2.GaussianBlur(image, BLUR_KERNEL_SIZE, STD_DEV_X_DIRECTION, STD_DEV_Y_DIRECTION)
 MAX_COLOR_VAL = 255
 BLOCK_SIZE = 15
 SUBTRACT_FROM_MEAN = -2

 img_bin = cv2.adaptiveThreshold(
 ~blurred,
 MAX_COLOR_VAL,
 cv2.ADAPTIVE_THRESH_MEAN_C,
 cv2.THRESH_BINARY,
 BLOCK_SIZE,
 SUBTRACT_FROM_MEAN,
)
 vertical = horizontal = img_bin.copy()
 SCALE = 5
 image_width, image_height = horizontal.shape
 horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(image_width / SCALE), 1))
 horizontally_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel)
 vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(image_height / SCALE)))
 vertically_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel)

 horizontally_dilated = cv2.dilate(horizontally_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1)))
 vertically_dilated = cv2.dilate(vertically_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 60)))

 mask = horizontally_dilated + vertically_dilated
 contours, heirarchy = cv2.findContours(
 mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE,
)

 perimeter_lengths = [cv2.arcLength(c, True) for c in contours]
 epsilons = [0.05 * p for p in perimeter_lengths]
 approx_polys = [cv2.approxPolyDP(c, e, True) for c, e in zip(contours, epsilons)]

 # Filter out contours that aren't rectangular. Those that aren't rectangular
 # are probably noise.
 approx_rects = [p for p in approx_polys if len(p) == 4]
 bounding_rects = [cv2.boundingRect(a) for a in approx_polys]

 # Filter out rectangles that are too narrow or too short.
 MIN_RECT_WIDTH = 40
 MIN_RECT_HEIGHT = 10
 bounding_rects = [
 r for r in bounding_rects if MIN_RECT_WIDTH < r[2] and MIN_RECT_HEIGHT < r[3]
]

 # The largest bounding rectangle is assumed to be the entire table.
 # Remove it from the list. We don't want to accidentally try to OCR
 # the entire table.
 largest_rect = max(bounding_rects, key=lambda r: r[2] * r[3])
 bounding_rects = [b for b in bounding_rects if b is not largest_rect]

 cells = [c for c in bounding_rects]
 def cell_in_same_row(c1, c2):
 c1_center = c1[1] + c1[3] - c1[3] / 2
 c2_bottom = c2[1] + c2[3]
 c2_top = c2[1]
 return c2_top < c1_center < c2_bottom

 orig_cells = [c for c in cells]
 rows = []
 while cells:
 first = cells[0]
 rest = cells[1:]
 cells_in_same_row = sorted(
 [
 c for c in rest
 if cell_in_same_row(c, first)
],
 key=lambda c: c[0]
)

 row_cells = sorted([first] + cells_in_same_row, key=lambda c: c[0])
 rows.append(row_cells)
 cells = [
 c for c in rest
 if not cell_in_same_row(c, first)
]

 # Sort rows by average height of their center.
 def avg_height_of_center(row):
 centers = [y + h - h / 2 for x, y, w, h in row]
 return sum(centers) / len(centers)

 rows.sort(key=avg_height_of_center)
 cell_images_rows = []
 for row in rows:
 cell_images_row = []
 for x, y, w, h in row:
 cell_images_row.append(image[y:y+h, x:x+w])
 cell_images_rows.append(cell_images_row)
 return cell_images_rows

if __name__ == "__main__":
 main(sys.argv[1])

5.2.6 table_ocr/ocr_image/

5.2.6.1 table_ocr/ocr_image/__init__.py

import math

import cv2
import numpy as np
import pytesseract

def crop_to_text(image):
 MAX_COLOR_VAL = 255
 BLOCK_SIZE = 15
 SUBTRACT_FROM_MEAN = -2

 img_bin = cv2.adaptiveThreshold(
 ~image,
 MAX_COLOR_VAL,
 cv2.ADAPTIVE_THRESH_MEAN_C,
 cv2.THRESH_BINARY,
 BLOCK_SIZE,
 SUBTRACT_FROM_MEAN,
)

 img_h, img_w = image.shape
 horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(img_w * 0.5), 1))
 vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(img_h * 0.7)))
 horizontal_lines = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel)
 vertical_lines = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel)
 both = horizontal_lines + vertical_lines
 cleaned = img_bin - both

 # Get rid of little noise.
 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
 opened = cv2.morphologyEx(cleaned, cv2.MORPH_OPEN, kernel)
 opened = cv2.dilate(opened, kernel)

 contours, hierarchy = cv2.findContours(opened, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
 bounding_rects = [cv2.boundingRect(c) for c in contours]
 NUM_PX_COMMA = 6
 MIN_CHAR_AREA = 5 * 9
 char_sized_bounding_rects = [(x, y, w, h) for x, y, w, h in bounding_rects if w * h > MIN_CHAR_AREA]
 if char_sized_bounding_rects:
 minx, miny, maxx, maxy = math.inf, math.inf, 0, 0
 for x, y, w, h in char_sized_bounding_rects:
 minx = min(minx, x)
 miny = min(miny, y)
 maxx = max(maxx, x + w)
 maxy = max(maxy, y + h)
 x, y, w, h = minx, miny, maxx - minx, maxy - miny
 cropped = image[y:min(img_h, y+h+NUM_PX_COMMA), x:min(img_w, x+w)]
 else:
 # If we morphed out all of the text, assume an empty image.
 cropped = MAX_COLOR_VAL * np.ones(shape=(20, 100), dtype=np.uint8)
 bordered = cv2.copyMakeBorder(cropped, 5, 5, 5, 5, cv2.BORDER_CONSTANT, None, 255)
 return bordered
def ocr_image(image, config):
 return pytesseract.image_to_string(
 image,
 config=config
)

5.2.6.2 table_ocr/ocr_image/__main__.py

This does a little bit of cleanup before sending it through tesseract.

Creates images and text files that can be used for training tesseract. See
https://github.com/tesseract-ocr/tesstrain.

import argparse
import math
import os
import sys

import cv2

from table_ocr.ocr_image import crop_to_text, ocr_image

description="""Takes a single argument that is the image to OCR.
Remaining arguments are passed directly to Tesseract.

Attempts to make OCR more accurate by performing some modifications on the image.
Saves the modified image and the OCR text in an `ocr_data` directory.
Filenames are of the format for training with tesstrain."""
parser = argparse.ArgumentParser(description=description)
parser.add_argument("image", help="filepath of image to perform OCR")

def main(image_file, tess_args):
 directory, filename = os.path.split(image_file)
 filename_sans_ext, ext = os.path.splitext(filename)
 image = cv2.imread(image_file, cv2.IMREAD_GRAYSCALE)
 cropped = crop_to_text(image)
 ocr_data_dir = os.path.join(directory, "ocr_data")
 os.makedirs(ocr_data_dir, exist_ok=True)
 out_imagepath = os.path.join(ocr_data_dir, filename)
 out_txtpath = os.path.join(ocr_data_dir, "{}.gt.txt".format(filename_sans_ext))
 cv2.imwrite(out_imagepath, cropped)
 txt = ocr_image(cropped, " ".join(tess_args))
 print(txt)
 with open(out_txtpath, "w") as txt_file:
 txt_file.write(txt)

if __name__ == "__main__":
 args, tess_args = parser.parse_known_args()
 main(args.image, tess_args)

5.2.7 table_ocr/ocr_to_csv/

5.2.7.1 table_ocr/ocr_to_csv/__init__.py

import csv
import io
import os

def text_files_to_csv(files):
 """Files must be sorted lexicographically
 Filenames must be <row>-<colum>.txt.
 000-000.txt
 000-001.txt
 001-000.txt
 etc...
 """
 rows = []
 for f in files:
 directory, filename = os.path.split(f)
 with open(f) as of:
 txt = of.read()
 row, column = map(int, filename.split(".")[0].split("-"))
 if row == len(rows):
 rows.append([])
 rows[row].append(txt)

 csv_file = io.StringIO()
 writer = csv.writer(csv_file)
 writer.writerows(rows)
 return csv_file.getvalue()

5.2.7.2 table_ocr/ocr_to_csv/__main__.py

import argparse
import os

from table_ocr.ocr_to_csv import text_files_to_csv

parser = argparse.ArgumentParser()
parser.add_argument("files", nargs="+")

def main(files):
 print(text_files_to_csv(files))

if __name__ == "__main__":
 args = parser.parse_args()
 files = args.files
 files.sort()
 main(files)

6 Utils

The following code lets us specify a size for images when they are exported to
html.

Org supports specifying an export size for an image by putting the #+ATTR_HTML:
:width 100px before the image. But since our images are in a results drawer, we
need a way for our results drawer to do that for us automatically.

Adding #+ATTR_HTML after the beginning of the result block introduces a new
problem. Org-babel no longer recognizes the result as a result block and doesn’t
remove it when a src block is re-evaluated, so we end up just appending new
results on each evaluation.

There is nothing configurable that will tell org-babel to remove our line. But
we can define a function to do some cleanup and then add it as a before hook
with advice-add.

(concat "#+ATTR_HTML: :width " width " :height " height "\n[[file:" text "]]")

(defun remove-attributes-from-src-block-result (&rest args)
 (let ((location (org-babel-where-is-src-block-result))
 (attr-regexp "[]*#\\+ATTR.*$"))
 (when location
 (save-excursion
 (goto-char location)
 (when (looking-at (concat org-babel-result-regexp ".*$"))
 (next-line)
 (while (looking-at attr-regexp)
 (kill-whole-line)))))))

(advice-add 'org-babel-remove-result :before #'remove-attributes-from-src-block-result)
(advice-add 'org-babel-execute-src-block :before #'remove-attributes-from-src-block-result)

6.1 Logging

def get_logger(name):
 logger = logging.getLogger(name)
 lvl = os.environ.get("PY_LOG_LVL", "info").upper()
 handler = logging.StreamHandler()
 formatter = logging.Formatter(logging.BASIC_FORMAT)
 handler.setFormatter(formatter)
 logger.addHandler(handler)
 handler.setLevel(lvl)
 logger.setLevel(lvl)
 return logger

Author: Eric Ihli

Created: 2020-04-25 Sat 12:20

